Lanopylins A₁, B₁, A₂ and B₂, Novel Lanosterol Synthase Inhibitors from

Streptomyces sp. K99-5041

Yuichi Sakano^a, Masaaki Shibuya^a, Atsuko Matsumoto^b, Yoko Takahashi^b, Hiroshi Tomoda^b, Satoshi Ōmura^b and Yutaka Ebizuka^{a,*}

 ^a Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
^b Kitasato Institute for Life Sciences, Kitasato University, and The Kitasato Institute, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan

(Received for publication June 25, 2003)

From an actinomycete strain, *Streptomyces* sp. K99-5041, lanopylins A₁, B₁, A₂ and B₂ were isolated as new natural products that inhibited the reaction of recombinant human lanosterol synthase. The crude extract from the whole broth of this strain was fractionated by silica gel column chromatography to afford an active fraction that showed a single spot on TLC. Detailed analyses of this fraction with liquid chromatography-atmospheric pressure chemical ionization mass spectrometry revealed that it contained 20 homologous compounds with differing side chain lengths. The fraction was separated by preparative HPLC to afford four of these homologues, lanopylins A₁, B₁, A₂ and B₂. Detailed spectroscopic analyses of these isolated compounds led to the identification of their structures. Lanopylins A₁ and B₁ were (*3E*)-isohexadecylmethylidene-2-methyl-1-pyrroline and (*3E*)-hexadecylmethylidene-2-methyl-1-pyrroline and B₁, respectively. These compounds inhibited recombinant human lanosterol synthase with IC₅₀ values of 15, 18, 33, and 41 μ M, respectively.

Hypercholesterolemia is recognized as a risk factor for atherosclerotic disease, such as coronary heart disease. Moderate exercise and/or diets containing low cholesterol or which suppress cholesterol biosynthesis may prevent the development of hypercholesterolemia. 3-Hydroxy-3methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) is a clinically validated target for suppressing cholesterol biosynthesis. Inhibitors of this enzyme, for example, pravastatin and lovastatin, are the first choice for pharmaceutical treatment of hypercholesterolemia¹⁾. But since HMG-CoA reductase is located upstream in the cholesterol biosynthetic pathway, inhibition of this enzyme may cause a simultaneous reduction in the physiologically essential non-sterol isoprenoid metabolites such as dolichol, ubiquinone, and prenylated proteins. On the other hand, inhibition of the enzymes along the pathway from lanosterol through cholesterol will cause accumulation of steroidal intermediates or metabolites, with unexpected side effects.

Lanosterol synthase (EC 5.4.99.7) is viewed as more selective target for suppression of cholesterol biosynthesis^{2,3)} since it is located downstream of HMG-CoA reductase in the pathway. Reported lanosterol synthase inhibitors are lauryldimethylamine N-oxide (LDAO)⁴, 29-methylidene-2,3-oxidosqualene (29-MOS)⁵⁾, BIBX 79⁶⁾, Ro 48-8071⁷⁾, BIBB 515⁸⁾ etc., although no natural compounds have so far been reported to be lanosterol synthase inhibitors. Using recombinant human enzymes, screening of inhibitors of natural origin has been carried out with fermentation broths of 1,031 actinomycete strains. Four inhibitors, lanopylin A₁, B₁, A₂ and B₂, have been isolated as new natural products from the actinomycete strain Streptomyces sp. K99-5041 and their structures elucidated using spectroscopic methods. In this paper, we describe the taxonomy and fermentation of the producing strain, and isolation, biological properties, and structure elucidation of these

compounds.

Materials and Methods

General

The actinomycete strain K99-5041 was isolated from a soil sample. The International Streptomyces Project (ISP) media recommended by SHIRLING and GOTTLIEB9), and media recommended by WAKSMAN¹⁰⁾ were used to investigate the cultural and physiological characteristics. Cultures were routinely observed after incubation for two weeks at 27°C. Color names and hue numbers were determined according to the Color Harmony Manual¹¹⁾. The utilization of carbon sources was tested by growth on PRIDHAM and GOTTLIEB's medium containing 1% carbon at 27°C¹²⁾. The morphological properties were observed with a scanning electron microscope (model JSM-5600, JEOL). The isomers of diaminopimelic acid (DAP) isomers were determined by the method of BECKER et al.¹³⁾. Menaquinones were extracted and purified after COLLINS et al.¹⁴) then analyzed by high performance liquid chromatography (HPLC) equipped with a CAPCELL PAK C18 column (Shiseido)¹⁵⁾.

NMR spectra were recorded using a JEOL JNM-alpha 500 spectrometer. Mass spectrometry analysis utilized a JEOL JMS-SX102A spectrometer. UV and IR spectra were measured with a Hitachi U-2000 spectrophotometer and a Horiba FT-210 infrared spectrometer, respectively. Optical rotations were obtained with a JASCO P-1010 polarimeter. Liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCIMS) analysis was carried out using a Thermo Quest LCQ equipped with a Hewlett Packard HP1100 series LC system under the following conditions: column, TSK gel ODS-80T_M (4.6×150 mm, Tosoh); eluent, 98% MeOH; flow rate, 0.8 ml/minute; and photodiode array detector, APCI (positive).

Fermentation Media

The seed medium was composed of starch 2.4%, glucose 0.1%, peptone 0.3%, meat extract 0.3%, yeast extract 0.5% and CaCO₃ 0.4% in deionized water (pH 7.0 prior to sterilization). The production medium was composed of glucose 0.5%, corn steep powder 1.0%, oatmeal 1.0%, Pharmamedia 1.0%, K₂HPO₄ 0.1%, MgSO₄·7H₂O 0.1%, Sekado (Kanto Chemicals, Co. Ltd.) 0.5% and trace elements (each 0.0001%: FeSO₄·7H₂O, MnCl₂·4H₂O, ZnSO₄·7H₂O, CuSO₄·5H₂O and CoCl₂·6H₂O) in tap water (pH 7.0 prior to sterilization).

In Vitro Assay for Human Lanosterol Synthase

The details of procedures for the preparation of cell-free extracts from recombinant Saccharomyces cerevisiae expressing human lanosterol synthase, the preparation of $[^{14}C]$ (3S)-2,3-oxidosqualene and the *in vitro* assay for human lanosterol synthase will be described elsewhere. The cDNA of human lanosterol synthase¹⁶⁾ was expressed in the mutant S. cerevisiae GIL77 (gal2 hem3-6 erg7 ura3-167)¹⁷), and the cells from this recombinant yeast were collected and homogenized in a Waring blender with acid-washed glass beads in 0.1 M potassium-phosphate buffer (pH 7.4, containing 0.45 M sucrose, 1 mM EDTA and 1 mM dithiothreitol). The lysate was centrifuged at $8,600 \times g$ for 30 minutes and the resultant supernatant was adjusted to ca. 10 mg protein/ml with the same buffer. The amount of protein was estimated using the Protein Assay (Bio-Rad). The substrate $[^{14}C]$ (3S)-2,3-oxidosqualene was prepared by feeding the mutant yeast strain GL7 (MATa gal2 hem3-6 erg7)¹⁸⁾ with $[1-^{14}C]$ sodium acetate. The *in vitro* enzyme reaction was performed as follows: The cell-free extract (1 mg protein) was incubated with [14C] (3S)-2,3oxidosqualene (0.17 nmol, 4.5 nCi dissolved in 5μ l of 2methoxyethanol) and testing samples (dissolved in $120 \,\mu$ l of 50% aqueous ethanol) in 1 ml of 0.1 M potassium phosphate buffer (pH 7.4, containing 0.1% Triton X-100) at 37°C for 1 hour. After incubation, the reaction was stopped by adding 6% KOH/EtOH followed by 10-minute incubation at 37°C. After extraction with cyclohexane, the lipids were concentrated and applied to a TLC plate (Merck), which was developed with benzene-acetone (19:1). The resultant TLC plates were exposed to an imaging plate and analyzed with a Photo Image Analyzer BAS-1500 (Fujifilm).

Results and Discussion

Taxonomy of the Producing Organism

The vegetative mycelia grew abundantly on yeast extractmalt extract agar and oatmeal agar, and did not show fragmentation into coccoid forms or bacillary elements. The aerial mycelia grew abundantly on yeast extract-malt extract agar. The spore chains were open loops and each had more than 20 spores per chain. The spores were cylindrical in shape, $0.9 \sim 1.1 \times 0.6 \sim 0.7 \,\mu$ m in size and had a smooth surface (Fig. 1). Whirls, sclerotic granules, sporangia or flagellate spores were not observed.

The isomer of DAP in whole-cell hydrolysates of strain K99-5041 was determined to be LL-form. Major menaquinones were $MK-9(H_6)$ and $MK-9(H_8)$.

THE JOURNAL OF ANTIBIOTICS

819

Table 1. Cultural characteristics of strain K99-5041.

Medium		Cultural characteristics	Medium		Cultural characteristics
Yeast extract-malt extract agar ^a	G: R:	Good, light wheat (2ea) Honey gold (2ic)	Tyrosine agar ^a	G: R:	Moderate, light tan (3gc) to chestnut brown (4ni) Bamboo (2fb) to beaver (3li)
	AM:	Abundant, dusk (10fe)		AM:	None
	SP:	Trace, yellow		SP:	Trace, yellow
Oatmeal agar ^a	G:	Good, honey gold (2ic)	Sucrose-nitrate	G:	Moderate, ivory (2db)
	R:	Honey gold (2ic)	agar ^b	R:	Ivory (2db)
	AM:	Poor, orchid haze (10dc)		AM:	Poor, alabaster tint (13ba)
	SP:	None		SP:	None
Inorganic salts-	G:	Moderate, honey gold (2ic)	Glucose-nitrate	G:	None
starch agar ^a	R:	Bamboo (2gc)	agar ^b	R:	None
	AM:	Moderate, alabaster tint (13ba)		AM:	None
	SP:	None		SP:	None
Glycerol-asparagine	G:	Moderate, light wheat (2ea) to clove brown (3ni)	Glycerol-calciu	m G:	Poor, yellow maple (3ng)
agar ^a	R:	Colonial yellow (2ga) to mustard brown (2ni)	malate agar ^b	R:	Cinamom (3le)
	AM:	None		AM:	None
	SP:	Trace, yellow		SP:	Trace, yellow
Glucose-asparagine	G:	Poor, light ivory (2ca)	Glucose-peptor	ne G:	Moderate, honey gold (2ic)
agar	R:	Light ivory (2ca)	agar ^b	R:	Mustard gold (2ne)
	AM:	None		AM:	Scant, white (a)
	SP:	None		SP:	None
Peptone-yeast	G:	Moderate, light wheat (2ea)	Nutrient agar ^b	G:	Moderate, honey gold (2ic)
extract-iron agar ^a	R:	Bamboo (2gc)		R:	Bamboo (2gc)
C .	AM:	None		AM:	Poor, alabaster tint (13ba)
	SP:	Trace, yellow		SP:	None

a; Medium recommended by ISP

b; Medium recommended by S. A. Waksman.

Abbreviations: G, growth of vegetative mycelium; R, reverse side color; AM, aerial mycelium; SP, soluble pigment.

Fig.	1.	Scanning	electron	micrograph	of
St	rept	tomvces sp.	K99-5041.		

Table 2. Physiological properties of strain K99-5041.

Melanin formation		
Tyrosine agar	negative	
Peptone-yeast extract-iron agar	negative	
Tryptone-yeast extract broth	negative	
Gelatin medium	negative	
Reduction of nitrate	negative	
Liquefaction of gelatin (21~23°C)	negative	
Hydrolysis of starch	negative	
Coagulation of milk (27°C)	negative	
Peptonization of milk (27°C)	negative	
Decomposition of cellulose	negative	
Temperature range for growth	12~33°C	

Table 3. Utilization of carbon sources by strain K99-5041.

Utilized:	D-Glucose, myo-Inositol
Weakly utilized:	Raffinose
Not utilized:	L-Arabinose, D-Fructose, D-Mannitol, Melibiose, L-Rhamnose
	Sucrose, D-Xylose

The cultural characteristics, the physiological properties and the utilization of carbon sources are shown in Tables $1\sim3$. The color of vegetative mycelia was yellow to brown and the aerial mass was white to gray. Melanoid pigment was not produced but yellowish pigment was produced.

Based on the taxonomic properties described above, strain K99-5041 is considered to belong to the genus $Streptomyces^{19}$.

Fermentation

A slant culture of strain K99-5041 was inoculated into a 500-ml Erlenmeyer flask containing 100 ml of the seed medium. The flask was shaken on a rotary shaker at 27°C for 3 days. The seed culture (1 ml) was transferred into 70 separate 500-ml Erlenmeyer flasks containing 100 ml of the production medium. The fermentation was carried out on a rotary shaker at 27°C for 6 days.

Isolation and Biological Properties

The cultured broth (7 liters) was extracted with ethyl acetate and centrifuged. The organic layer was dried over Na_2SO_4 and concentrated *in vacuo* to dryness to afford 5.5 g of red-brown oily material. The crude extract was subjected to silica gel column chromatography (Wakogel[®] C-200, Wako) with a CHCl₃-MeOH solvent system. Activity was concentrated to the single spot of Rf ~0.4 on TLC [CHCl₃-MeOH (19:1)] to yield 97.3 mg of oily material (labeled fraction N).

Fraction N was analyzed by liquid chromatographyatmospheric pressure chemical ionization mass spectrometry (LC-APCIMS) with an ion-trap mass analyzer. The UV and total-ion chromatograms of this fraction comprised 10 peaks, all of which had maximal absorbance at 235 nm. The molecular masses (m/z) of these peaks were observed, in order from the peak with the earliest retention time, 317, 317, 331, 331, 345, 345, 359, 359, 373 and 373. We labeled these peaks C, D, E, F, A, B, G, H, I and J, respectively (Fig. 2-(A)).

The two peaks A and B were purified from fraction N by preparative HPLC using a Tosoh CCPE-II pump under the following conditions: column, TSK gel ODS- $80T_{M}$ (7.8×300 mm, Tosoh); eluent, 98% MeOH; flow rate, 2.0 ml/minute; and detection, 234 nm. Under these conditions, peaks A and B were eluted at 29 and 31 minutes, respectively. Each of the eluates was concentrated to dryness. These two HPLC fractions were essentially equipotent in the enzyme assay (data not shown). NMR

analyses revealed that they were mixtures because the signals $\delta_{\rm H}$ 5.35, 2.01 and $\delta_{\rm C}$ 129.9, 27.2 were observed at decimal intensities (data not shown).

Next, we performed detailed LC-APCIMS analysis of fraction N. For example, in the mass spectra of peaks A and B, a signal was observed at m/z 320 (26 mass units smaller than the molecular mass m/z 346) and further investigation of the mass chromatograms at m/z 320 and 346 revealed a *ca*. 0.1-minute time lag in the retention time (Fig. 2-(B)). A similar time lag was observed in other HPLC peaks (data not shown). These findings led us to consider that each of the above-mentioned ten peaks (from A to J) was composed of two compounds, differing in molecular mass by 26 mass units, and thus that fraction N contained 20 types of homologous compounds as shown in Fig. 3. Therefore for

(A) The UV (235 nm) and (B) mass chromatograms from analytical LC-APCIMS of the active silica-gel fraction N.

Fig. 3. Structures of lanopylins A_1 and B_1 , and putative structures of A_2 , B_2 and $C \sim J$.

The ten peaks identified with LC-APCIMS (Fig. 2-(A)) comprise lanopylins C_1 and C_2 (for peak C), D_1 and D_2 (for peak D), E_1 and E_2 (for peak E), F_1 and F_2 (for peak F), A_1 and A_2 (for peak A), B_1 and B_2 (for peak B), G_1 and G_2 (for peak G), H_1 and H_2 (for peak H), I_1 and I_2 (for peak I), and J_1 and J_2 (for peak J), respectively.

Table 4. Physicochemical properties of lanopylins A_1 , B_1 , A_2 and B_2 .

Lanopylin A ₁
Appearance: colorless oil
Molecular weight: 319
Molecular formula: C ₂₂ H ₄₁ N
EIMS: <i>m/z</i> (% rel. int.) 319 [M] ⁺ (70), 304 (30), 290 (0), 276 (42), 262 (19), 248 (15), 234 (14), 220 (11), 206
(6), 192 (5), 178 (4), 164 (5), 150 (5), 136 (11), 122 (100), 96 (66), 67 (66)
HR-FABMS: m/z 320.3321 [M+H] ⁺ , Δ +0.3 mmu
UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ϵ): 235 (14,500)
IR ν_{max} (KBr) cm ⁻¹ : 3435, 2924, 2854, 1606, 1466, 1385
TLC: CHCl ₃ -MeOH (19:1) Rf~0.4, H ₂ SO ₄ (+), Ninhydrin(+), Dragendorff(+)
Lanopylin B_1
Appearance: colorless oil
Molecular weight: 319
Molecular formula: $C_{22}H_{41}N$
EIMS: m/z (% rel. int.) 319 [M] ⁺ (77), 304 (12), 290 (20), 276 (23), 262 (20), 248 (17), 234 (16), 220 (12), 206
(7), 192 (5), 178 (5), 164 (5), 150 (5), 136 (10), 122 (100), 96 (67), 67 (61)
HR-FABMS: m/z 320.3324 [M+H] ⁺ , Δ +0.6 mmu
UV λ_{\max}^{McOH} nm (ϵ): 235 (13,900)
IR ν_{max} (KBr) cm ⁻¹ : 3431, 2924, 2852, 1606, 1466, 1385, 1261, 1099, 1032, 804
TLC: CHCl ₃ -MeOH (19:1) Rf~0.4, H ₂ SO ₄ (+), Ninhydrin(+), Dragendorff(+)
Lanopylin A_2
Appearance: colorless oil
Molecular weight: 345
Molecular formula: $C_{24}H_{43}N$
EIMS: m/z (% rel. int.) 345 [M] ⁺ (71), 330 (24), 316 (1), 302 (23), 288 (38), 274 (43), 260 (24), 246 (15), 234
(4), 220 (12), 206 (10), 192 (6), 178 (5), 164 (4), 150 (5), 136 (7), 122 (100), 96 (40), 67 (31), 55 (34)
HR-FABMS: m/z 346.3449 [M+H] ⁺ , Δ –2.5 mmu
TLC: CHCl ₃ -MeOH (19:1) Rf~0.4, H ₂ SO ₄ (+), Ninhydrin(+), Dragendorff(+)
¹ H-NMR (500.00 MHz, CDCl ₃): $\delta_{\rm H}$ 0.87 (6H, d, J = 6.5 Hz), 1.15 (2H, br dt, J = 6.8, 6.8 Hz), 1.2–1.4 (16H,
m), 1.43 (2H, br tt, $J = 7.3$, 7.3 Hz), 1.51 (1H, sept, $J = 6.6$ Hz), 2.01 (4H, br dt, $J = 7.0$, 7.0 Hz), 2.06 (3H, t, $J = 7.0$, 7.0 Hz), 7.0 Hz), 7.0
= 1.8 Hz), 2.10 (2H, br dt, J = 7.3, 7.3 Hz), 2.48 (2H, m), 3.86 (2H, m), 5.35 (2H, t, J = 5.5 Hz), 5.75 (1H, sept-
like)

Lanopylin B₂

Appearance: colorless oil

Molecular weight: 345

Molecular formula: C₂₄ H₄₃N

EIMS *m/z* (% rel. int.): 345 [M]⁺ (55), 330 (12); 316 (10), 302 (13), 288 (31), 274 (31), 260 (19), 246 (11), 234 (5), 220 (10), 206 (9), 192 (6), 178 (5), 164 (4), 150 (5), 136 (7), 122 (100), 96 (43), 67 (37), 55 (45)

HR-FABMS: *m/z* 346.3499 [M+H]⁺, Δ +2.5 mmu

TLC: CHCl₃-MeOH (19:1) Rf~0.4, H₂SO₄(+), Ninhydrin(+), Dragendorff(+)

¹H-NMR (500.00 MHz, CDCl₃): $\delta_{\rm H}$ 0.88 (3H, t, J = 7.0 Hz), 1.2–1.4 (22H, m), 1.43 (2H, br tt, J = 7.2, 7.2 Hz), 2.01 (4H, br dt, J = 6.3, 6.3 Hz), 2.06 (3H, t, J = 1.8 Hz), 2.10 (2H, br dt, J = 7.2, 7.2 Hz), 2.48 (2H, m), 3.86 (2H, m), 5.35 (t, J = 5.5 Hz), 5.76 (1H, sept-like)

peaks A and B, we called the two compounds with molecular mass of 319 lanopylins A_1 and B_1 , and the other two compounds with molecular mass of 345 were called lanopylins A_2 and B_2 , as shown in Fig. 2-(B).

Lanopylins A1 and A2 were purified from fraction A with further preparative HPLC using the Tosoh 8020 system under the following conditions: column, TSK gel ODS-120T (4.6×150 mm, Tosoh); eluent, MeOH; flow rate, 1.5 ml/minute; and detection, 234 nm. Lanopylin A₂ was eluted at 8 minutes, followed by an extended $30 \sim 40$ minutes elution of lanopylin A₁. Lanopylin B₁ and B_2 were similarly purified from fraction B under the above conditions. Lanopylin B₂ was eluted at 8 minutes, followed by a 30~40 minutes elution of lanopylin B_1 . The eluates were concentrated to dryness to yield lanopylin A_1 (3.5 mg), B_1 (2.3 mg), A_2 (0.6 mg) and B_2 (0.5 mg) as colorless oil. The IC₅₀ values of these compounds were 15, 18, 33 and $41 \,\mu\text{M}$, respectively, and their potency was comparable to the known oxidosqualene cyclase inhibitors, LDAO (purchased from Sigma; $IC_{50}=0.84 \,\mu\text{M}$) and AMO1618 (purchased from Wako; $IC_{50} = 120 \,\mu\text{M}$).

Structure Elucidation

The physicochemical properties of the isolated compounds are summarized in Table 4. The molecular formulae of lanopylin A_1 and B_1 were determined to be $C_{22}H_{41}N$, and the molecular formulae of lanopylin A_2 and B_2 were determined to be $C_{24}H_{43}N$ by HR-FABMS. The 26-mass unit differences between lanopylins A_1 and A_2 and between lanopylins B_1 and B_2 therefore corresponded to C_2H_2 .

The structure of lanopylin A_1 was elucidated by NMR and MS analyses. Analyses of the ¹H-NMR, ¹³C-NMR, DEPT, and HMQC spectra revealed the presence of two quaternary carbons, two methines, 15 methylenes and three methyl groups. Taken together with the results of analyses of various NMR investigations and the EIMS spectra, the structure of lanopylin A_1 was finally elucidated to be (*3E*)-isohexadecylmethylidene-2-methyl-1-pyrroline (Fig. 4). The NMR assignment of lanopylin A_1 is presented in Table 5. The evidence was as follows:

1) The ¹H homonuclear decoupling measurement by irradiation of H-4, H-7 or H-1' indicated that the ¹H-¹H coupling constants are 3.0 Hz between H-4 and H-7, and 7.3 Hz between H-7 and H-1', respectively.

2) The presence of a 3-methylidene-2-methyl-1-pyrroline moiety was indicated by the following NMR data: The ¹H-¹H couplings between H-4 ($\delta_{\rm H}$ 2.48) and H-5 ($\delta_{\rm H}$ 3.86), between H-4 and H-7 ($\delta_{\rm H}$ 5.75) and between H-5 and H-6

Fig. 4. Key ¹H-¹H COSY, HMBC and NOESY connectivities observed in lanopylin A₁.

 $(\delta_{\rm H} 2.06)$, and the ¹H-¹³C long-range couplings from H-4 to C-3 ($\delta_{\rm C}$ 143.2) and C-5 ($\delta_{\rm C}$ 57.8), from H-5 to C-2 ($\delta_{\rm C}$ 171.7), from H-6 to C-2 and C-3 and from H-7 to C-2 and C-4 ($\delta_{\rm C}$ 26.8). This is supported by the NMR data of this moiety in the known synthetic compounds²⁰⁾. To the best of our knowledge, no natural products have been previously reported to have this moiety.

3) The doublet signal at $\delta_{\rm H}$ 0.86 with the intensity of 6 protons showed the presence of an *iso*-branched propyl moiety (gem-dimethyl).

4) That the isohexadecyl side chain is attached to the 3-methylidene-2-methyl-1-pyrroline moiety at position 7 was indicated by the following: The ¹H-¹H couplings between H-4 and H-1' ($\delta_{\rm H}$ 2.10), between H-7 and H-1', between H-1' and H-2' ($\delta_{\rm H}$ 1.43), between H-2' and H-3' $(\delta_{\rm H}^+ 1.2 \sim 1.4)$, between H-12' $(\delta_{\rm H}^- 1.2 \sim 1.4)$ and H-13' $(\delta_{\rm H} 1.15)$, between H-13' and H-14' $(\delta_{\rm H} 1.51)$, between H-14' and H-15' ($\delta_{\rm H}$ 0.86) and between H-14' and H-16' $(\delta_{\rm H} 0.86)$, and the ¹H-¹³C long-range couplings from H-1' to C-3, C-7 ($\delta_{\rm C}$ 126.3) and C-2' ($\delta_{\rm C}$ 29.0), from H-2' to C-3' ($\delta_{\rm C}$ 29.4~30.0), from H-12' to C-13' ($\delta_{\rm C}$ 39.1), from H-13' to C-12' ($\delta_{\rm C}$ 27.4), C-14' ($\delta_{\rm C}$ 28.0), C-15' ($\delta_{\rm C}$ 22.7) and C-16' ($\delta_{\rm C}$ 22.7), from H-14' to C-13', C-15' and C-16', from H-15' to C-13', C-14' and C-16' and from H-16' to C-13', C-14' and C-15'. This is also supported by the observation of a series of fragmentations of the isoalkyl chain from m/z 319 ([M]⁺) to 122 (base peak), with weak relative intensity at m/z 290 ([M]⁺-29) in the EIMS spectrum (Table 4).

5) The geometrical configuration of the double bond between positions 3 and 7 was elucidated to be E by the NOEs between H-4 and H-1', and between H-6 and H-7.

In the same manner, the structure of lanopylin B_1 was finally elucidated to be (3*E*)-hexadecylmethylidene-2methyl-1-pyrroline. The NMR assignment of lanopylin B_1 is also presented in Table 5. The evidence was as follows:

	Lanopylin A ₁			Lanopylin B ₁			
Position	¹³ C δ ppm	¹ H δ ppm (<i>J</i> in Hz)	- Position	¹³ C δ ppm	¹ H δ ppm (<i>J</i> in Hz)		
1			1.				
2	171.7		2	171.7			
3	143.2		3	143.2			
4	26.8	2.48 (2H, m)	4	26.8	2.48 (2H, m)		
5	57.8	3.86 (2H, m)	5	57.8	3.86 (2H, m)		
6	15.9	2.06 (3H, t, 1.5)	6	15.9	2.06 (3H, t, 1.5)		
7	126.3	5.75 (1H, tt, 7.3, 3.0)	7	126.2	5.75 (1H, tt, 7.3, 3.0)		
1'	30.5	2.10 (2H, br dt 7.5, 7.5)	1'	30.5	2.10 (2H, br dt 7.5, 7.5)		
2'	29.0	1.43 (2H, br tt, 7.1, 7.1)	2'	29.0	1.43 (2H, br tt, 7.3, 7.3)		
3'-11'	29.4–30.0	} 1.2−1.4 (20H, m)	3'-13'	29.4–29.7			
12'	27.4				J 1.2–1.4 (26H, m)		
13'	39.1	1.15 (2H, br dt, 6.8, 6.8)	14'	31.9			
14'	28.0	1.51 (1H, sept, 6.6)	15'	22.7			
15',16'	22.7	0.86 (6H, d, 6.5)	16'	14.1	0.88 (3H, t, 7.0)		

Table 5. NMR data of lanopylins A_1 and B_1 .

¹H-NMR (500.00 MHz) and ¹³C-NMR (125.65 MHz) spectra were obtained in chloroform-*d*.

1) Signals and correlations obtained from NMR analyses were almost identical to those of lanopylin A_1 .

2) The evidence that a hexadecyl side chain is attached to the (3E)-methylidene-2-methyl-1-pyrroline moiety at

position 7 is as follows: Increase of two methylene carbons, decrease of one methine and one methyl carbons, the triplet signal at $\delta_{\rm H}$ 0.88 with the intensity of 3 protons in place of the doublet signal at $\delta_{\rm H}$ 0.86 with the intensity of 6 protons,

the ¹H-¹H coupling between H-15' ($\delta_{\rm H}$ 1.2~1.4) and H-16' ($\delta_{\rm H}$ 0.88) and the ¹H-¹³C long-range couplings from H-16' to C-14' ($\delta_{\rm C}$ 31.9) and C-15' ($\delta_{\rm C}$ 22.7). This is also supported by the fact that a series of fragmentations of the alkyl chain from m/z 319 ([M]⁺) to 122 (base peak) were observed in the EIMS spectrum (Table 4).

The ¹H-NMR spectra of lanopylins A₂ and B₂ appeared almost the same as those of lanopylins A_1 and B_1 , respectively, except for the presence of the signals $\delta_{\rm H}$ 5.35 (2H, brt, $J=4\sim5$ Hz) and 2.01 (4H, dt, $J=\sim7$, ~7 Hz) (Table 4). Preliminary NMR analyses of fractions A and B showed that these protons were connected to the carbons at $\delta_{\rm C}$ 129.9 (d) and 27.2 (t), respectively, and these two methines and two methylenes correlate to the side chain methylenes [$\delta_{\rm H}$ 1.2~1.4 (m), $\delta_{\rm C}$ 29~30 (t)] (data not presented). Thus, the structure of lanopylin A₂ was elucidated to be the same as that of lanopylin A_1 except that one ethylenylidene ($C_2H_2=26$ mass units) was inserted in the isohexadecyl side chain of lanopylin A₁. The geometrical configuration of the double bond was assumed to be *cis* from the $\delta_{\rm C}$ value (27.2 ppm) of the neighboring methylene²¹⁾, although a spin-spin coupling was not observed between olefinic protons. Similarly, the structure of lanopylin B₂ was elucidated to be the same as that of lanopylin B_1 except that one *cis*-ethylenylidene $(C_2H_2=26 \text{ mass units})$ was inserted in the hexadecyl side chain of lanopylin B_1 . The fragmentation of the *cis*-alkenyl side chain in lanopylin A₂ and B₂ appeared to resemble that of N-monounsaturated fatty acyl pyrrolidides²²⁾.

The position of the *cis*-double bond in the side chain was assumed to be follows: The fragment peak at m/z 274 in the EIMS spectrum of lanopylin A₂ was intense, and two ions at 12-mass unit intervals were observed between m/z 234 and 246 (Table 4), and therefore lanopylin A₂ might be (3*E*)-isooctadec-(11'*Z*)-enylmethylidene-2-methyl-1pyrroline (Figs. 3 and 5). Similarly, the fragment peak at m/z 274 in the EIMS spectrum of lanopylin B₂ was intense and one pair of ions at 12-mass unit intervals was observed between m/z 234 and 246 (Table 4), and therefore lanopylin B₂ might be (3*E*)-octadec-(11'*Z*)enylmethylidene-2-methyl-1-pyrroline (Figs. 3 and 5). However, the position of the *cis*-double bond in the side chain could be elucidated by analyzing the fatty acids that might be produced by ozonolysis of these compounds or fractions.

In conclusion, four compounds, lanopylins A₁, B_1 , A_2 and B_2 (Fig. 3) were isolated from the Actinomycete strain Streptomyces sp. K99-5041 as new lanosterol synthase inhibitors and their structures were elucidated using spectroscopic methods to (3E)-isohexadecylmethylidene-2-methyl-1-pyrroline, be (3E)-hexadecylmethylidene-2-methyl-1-pyrroline, (3E)isooctadec-(11'Z)-enylmethylidene-2-methyl-1-pyrroline (3E)-octadec-(11'Z)-envlmethylidene-2-methyl-1and pyrroline, respectively. On the basis of the structures of lanopylins A_1 , B_1 , A_2 and B_2 , the structures of the other 16 homologues in fraction N were tentatively elucidated by preliminary NMR and LC-APCIMS analyses. All these the (3E)-methylidene-2-methyl-1homologues have pyrroline moiety as a common building block and differ in the length of side chains from lanopylins A₁, B₁, A₂ and B₂ (Fig. 3). These compounds are the first examples of lanosterol synthase inhibitors of natural origin. They are also the first examples with a naturally occurring (3*E*)-methylidene-2-methyl-1-pyrroline backbone. We hypothesize that the (3E)-methylidene-2-methyl-1-pyrroline homologues might inhibit lanosterol synthase production by mimicking substrate molecules: the iminium cation generated by protonation and the long side chains might mimic the C-2 cation generated by opening the epoxide and the flanking non-polar hydrocarbons, respectively. We also hypothesize that these homologues might be biosynthesized

via condensation of malonyl-CoA and alanine to fatty acyl-CoA or *via* metabolism from arginine and/or proline through coupling with alkyl or alkenyl side chains. These hypotheses could be confirmed in biochemical and biogenetical investigations using the producer strain. The assay for inhibition of cholesterol biosynthesis within the Chang liver cells²³⁾ and extensive structure-activity relationship studies are in progress.

References

- GRUND, S. M.: HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N. Engl. J. Med. 319: 24~33, 1988
- ABE, I.; J. C. TOMESCH, S. WATTANASIN & G. D. PRESTWICH: Inhibitors of squalene biosynthesis and metabolism. Nat. Prod. Rep. 11: 279~302, 1994
- 3) ABE, I. & G. D. PRESTWICH: Squalene epoxidase and oxidosqualene: lanosterol cyclase - key enzymes in cholesterol biosynthesis. *In* Comprehensive Natural Products Chemistry, Vol. 2., volume editor; CANE, D. E., editors-in-chief; BARTON, D. & NAKANISHI, K., executive editor; METH-COHN, O., pp. 267~298, Amsterdam, Elsevier, 1999
- 4) CATTEL, L.; M. CERUTI, F. VIOLA, L. DELPRINO, G. BALLIANO, A. DURIATTI & P. BOUVIER-NAVÉ: The squalene-2,3-epoxide cyclase as a model for the development of new drugs. Lipids 21: 31~38, 1986
- XIAO, X.-Y. & G. D. PRESTWICH: 29-Methylidene-2,3oxidosqualene: a potent mechanism-based inactivator of oxidosqualene cyclase. J. Am. Chem. Soc. 113: 9673~9674, 1991
- 6) MARK, M.; P. MÜLLER, R. MAIER & B. EISELE: Effects of a novel 2,3-oxidosqualene cyclase inhibitor on the regulation of cholesterol biosynthesis in HepG2 cells. J. Lipid Res. 37: 148~158, 1996
- 7) MORAND, O. H.; J. D. AEBI, H. DEHMLOW, Y.-H. JI, N. GAINS, H. LENGSFELD & J. HIMBER: Ro 48-8071, a new 2,3-oxidosqualene: lanosterol cyclase inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and minipigs: comparison to simvastatin. J. Lipid Res. 38: 373~390, 1997
- 8) EISELE, B.; R. BUDZINSKI, P. MÜLLER, R. MAIER & M. MARK: Effects of a novel 2,3-oxidosqualene cyclase inhibitor on cholesterol biosynthesis and lipid metabolism *in vivo*. J. Lipid Res. 38: 564~575, 1997
- SHIRLING, E. B. & D. GOTTLIEB: Methods for characterization of *Streptomyces* species. Int. J. Syst. Bacteriol. 16: 313~340, 1966

- WAKSMAN, S. A. (*Ed.*): Classification, identification and description of genera and species. *In* The Actinomycetes. Vol. 2, Williams and Wilkins Co., Baltimore, 1961
- 11) Container Corporation of America: Color Harmony Manual 4th. *Ed.* Chicago, 1958
- PRIDHAM, T. G. & D. GOTTLIEB: The utilization of carbon compounds by some *Actinomycetales* as an aid for species determination. J. Bacteriol. 56: 107~114, 1948
- 13) BECKER, B.; M. P. LECHEVALIER & H. A. LECHEVALIER: Chemical composition of cell-wall preparation from strains of various form-genera of aerobic actinomycetes. Appl. Microbiol. 13(2): 236~243, 1965
- 14) COLLINS, M. D.; M. GOODFELLOW & D. E. MINNIKIN: Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100: 221~230, 1977
- 15) TAMAOKA, J.; Y. KATAYAMA-FUJIMURA & H. KURAISHI: Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J. Appl. Bacteriol. 54: 31~36, 1983
- 16) SUNG, C. K.; M. SHIBUYA, U. SANKAWA & Y. EBIZUKA: Molecular cloning of cDNA encoding human lanosterol synthase. Biol. Pharm. Bull. 18: 1459~1461, 1995
- 17) KUSHIRO, T.; M. SHIBUYA & Y. EBIZUKA: β -Amyrin synthase: cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256: 238~244, 1998
- 18) GOLLUB, E. G.; K.-P. LIU, J. DAYAN, M. ADLERSBERG & D. B. SPRINSON: Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J. Biol. Chem. 252: 2846~2854, 1977
- 19) WILLIAMS, S. T.; M. GOODFELLOW & G. ALDERSON: Genus Streptomyces Waksman and Henrici 1943. In BERGEY'S Manual of Systematic Bacteriology, Volume 4. Ed., S. T. WILIAMS et al., pp. 2452~2492, Williams & Wilkins Co., 1989
- 20) GAWLEY, R. E. & E. J. TERMINE: The oxime rearrangement cyclization. Synthesis of alkylidene- Δ^1 -pyrrolines. J. Org. Chem. 49: 1946~1951, 1984
- 21) KLING, M. R.; C. J. EASTON & A. POULOS: Synthesis of very long chain fatty acid methyl esters. J. Chem. Soc. Perkin Trans 1: 1183~1189, 1993
- 22) ANDERSSON, B. Å. & R. T. HOLMAN: Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids 9: 185~190, 1973
- 23) SHIN, B. A.; Y. R. KIM, I.-S. LEE, C. K. SUNG, J. HONG, C. J. SIM, K. S. IM & J. H. JUNG: Lyso-PAF analogues and lysophosphatidylcholines from the marine sponge *Spirastrella abata* as inhibitors of cholesterol biosynthesis. J. Nat. Prod. 62: 1554~1557, 1999